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Abstract

An efficient and robust computational scheme is given for the calculation of the

frequency response function of a large order, flexible system implemented with a

linear, time invariant control system. Advantage is taken of the highly structured

sparsity of the system matrix of the plant based on a model of the structure using

normal mode coordinates. The computational time per frequency point of the new

computational scheme is a linear function of system size, a significant improvement

over traditional, full-matrix techniques whose computational times per frequency

point range from quadratic to cubic functions of system size. This permits the

practical frequency domain analysis of systems of much larger order than by

traditional, full-matrix techniques. Formulations are given for both open and closed
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loop systems. Numerical examples are presented showing the advantages of the

present formulation over traditional approaches, both in speed and in accuracy.

Using a model with 703 structural modes, a speed-up of almost two orders of

magnitude was observed while accuracy improved by up to 5 decimal places.

Introduction

Control of flexible systems has received significant attention in the literature.

To date, numerous techniques, algorithms and procedures have been developed for

design of controllers for such systems ranging from spacecraft and satellites to

aircraft, ships, machines, etc. These flexible systems which are generally infinite-

dimensional are typically modeled using a finite number of generalized coordinates

or modes. Control of flexible systems may become difficult depending on the

number, location, relative proximity, and inherent damping of these modes. The

response of the system to a given disturbance/excitation generally depends on

modal properties (amplitude, frequency, and damping) and the amplitude and phase

content of the disturbance/excitation. In general, two techniques, time domain

analysis and frequency domain analysis, have been developed and extensively

used to analyze and characterize the input/output behavior of linear time-invariant

systems including flexible systems. In frequency domain analysis, frequency

response functions (defined as transfer function matrices from inputs to outputs of

the system) have typically been used (usually in the form of magnitude and phase
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or Bode plots) in the analysis of linear systems as well as in designing controllers

for such systems. In general, frequency response functions of the open-loop system

are used to evaluate the performance of the open-loop system, and to identify and

quantify needed performance and/or stability improvements at various frequency

bands. The closed-loop frequency response functions are typically needed to insure

that desired performance and stability have been achieved by the control system.

Moreover, frequency-domain specifications such as peak magnitude, bandwidth,

roll-off rate, and etc. are often used in characterizing the desired behavior of the

system in the frequency domain (this is known as loop shaping).

In general, the order of the flexible system (as defined by the number of modes

retained in the model) for which open-loop and/or closed-loop analysis is performed

depends on the application considered. For example, if the closed-loop response

of a spacecraft with a low-bandwidth attitude control system is of interest, then a

small set of modes would be sufficient to capture the low frequency closed-loop

behavior of the system. On the other hand, if the response of the flexible system

is desired over a large frequency range or if the control system considered has a

high bandwidth, then a large set of modes (in the hundreds or thousands) may be

necessary to capture the true response of the system.

However, the current techniques for obtaining frequency response functions,

although able to deal with small or medium size systems, have problems in handling

large order systems. A straightforward calculation of the frequency response
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function matrix at a single frequency point which is based on the definition of

the transfer function has a computational cost which is a cubic function of the

system size. If this calculation must be repeated for many frequency points, Laub

([1] and [2]) presents a technique which has a better average cost. This technique

performs an initial orthogonal transformation of the system which reduces the

system response matrix to Hessenberg form. This initial transformation has a

computational cost which is a cubic function of the system size. This technique

can then calculate the frequency response function matrix at each frequency point

at a cost which is a quadratic function of the system size. However, for very large

systems (many hundreds of modes or more), even this is too slow, and a better

method is needed.

To this end, this paper describes a novel and efficient technique for the

computation of closed-loop frequency response functions of large order flexible

systems. The proposed technique is computationally robust and accurate. It

takes advantage of the sparsity of the flexible systems in normal mode coordinates

and reduces the computational cost from a quadratic function of the order of the

system to a linear function. Formulations are given for both open and closed loop

systems. Numerical examples are presented showing the advantages of the present

formulation over traditional approaches, both in speed and in accuracy.
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Mathematical Formulation

Second-Order Modal Equations

The dynamics of a typical linear, time-invariant flexible system may be written

in a second-order form as

M �x+D _x+Kx = Hu+ Hdw

y = Cpx+ Cr _x

ypr = Cpr
p x+ Cpr

r _x+ Cpr
a �x

whereM;D, andK are then � n mass, damping and stiffness matrices, respec-

tively; x is then�1 position/attitude vector;u is them�1 control input vector;w

is ther� 1 disturbance vector;H is then�m control input influence matrix; and

Hd is then � r disturbance influence matrix. The vectorsy andypr are, respec-

tively, theq � 1 measurements output vector and thel � 1 vector of performance

outputs;Cp andCr are q � n measurement output influence matrices; andC
pr
p ,

C
pr
r , andCpr

a are l � n performance output influence matrices.

If the second-order system is transformed into normal mode coordinates, andp

of the normal modes are retained to capture the relevant dynamics of the structure,

then the system equations may be written in a modal form as

�M �q + �D _q + �Kq = �Hu+ �Hdw
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y = �Cpq + �Cr _q

ypr = �Cpr
p q + �Cpr

r _q + �Cpr
a �q

where �M , �D, and �K are thep � p modal mass, damping, and stiffness matrices,

respectively;q is thep�1 vector of modal coordinates; and�H and �Hd are thep�m

control input and thep � r disturbance influence matrices in modal coordinates,

respectively. The matrices�Cp and �Cr are q � p measurement output influence

matrices in modal coordinates; and�Cpr
p , �C

pr
r , and �C

pr
a are l � p performance

output influence matrices in modal coordinates.

It is assumed that the mode shapes are normalized with respect to the mass

matrix, and modal damping is assumed. This means that�M = Ip, �D =

diagf2�1!1; 2�2!2; . . . ; 2�p!pg, and �K = diag
�
!2

1
; !2

2
; . . . ; !2

p

	
where Ip is

the identity matrix of orderp and !i and �i are the open-loop frequencies and

damping ratios.

The control input and disturbance influence matrices are given by:

�H = �TH

�Hd = �THd

The measurement and performance output influence matrices are given by:

�Cp = Cp� ; �Cr = Cr�
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�Cpr
p = Cpr

p � ; �Cpr
r = Cpr

r � ; �Cpr
a = Cpr

a �

The columns of matrix� are thep retained mode shapes:

� = [�1 �2 . . . �p ]

The second-order modal equations may be rewritten in a first-order form as

_xs = Asxs + Bsu+ Bdw

y = Cxs

ypr = C
pr
1
xs + C

pr
2

_xs:

(1)

The vectorxs is the plant state vector whose components are

xs =

8>>>>>>>>>><
>>>>>>>>>>:

q1
_q1
q2
_q2
...
...
qp
_qp

9>>>>>>>>>>=
>>>>>>>>>>;

;

and the vectorsy andypr are the same plant measurement and performance outputs,

respectively. The matrixAs is the plant state matrix and has the form

As =

2
664
A1

s 0 � � � 0
0 A2

s � � � 0
...

... . . . ...
0 0 � � � A

p
s

3
775 (2)

where

Ai
s =

�
0 1

�!2

i �2�i!i

�
: (3)
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The matrixBs is the control input influence matrix, formed by setting its odd-

numbered rows to zeros and using the rows of�H for its even-numbered rows:

Bs =

2
66666666664

0 0 � � � � � � 0
�H11

�H12 � � � � � �

�H1m

0 0 � � � � � � 0
�H21

�H22 � � � � � �

�H2m...
... . . . ...

...
... . . . ...

0 0 � � � � � � 0
�Hp1

�Hp2 � � � � � �

�Hpm

3
77777777775

(4)

in which �Hij, for example, represents the(i; j) element of matrix�H . The matrix

Bd is formed from �Hd in the same manner.

The measurement output influence matrix,C is defined by setting the odd-

numbered columns ofC to the columns of�Cp and the even numbered columns

of C to the columns of�Cr:

C =

2
66664

�Cp(1; 1) �Cr(1; 1) �Cp(1; 2) �Cr(1; 2) � � � � � �

�Cp(1; p) �Cr(1; p)
�Cp(2; 1) �Cr(2; 1) �Cp(2; 2) �Cr(2; 2) � � � � � �

�Cp(2; p) �Cr(2; p)
...

...
...

... . . . ...
...

...
...

...
... . . . ...

...
�Cp(q; 1) �Cr(q; 1) �Cp(q; 2) �Cr(q; 2) � � � � � �

�Cp(q; p) �Cr(q; p)

3
77775

where �Cp(i; j) and �Cr(i; j) denote the(i; j) element of matrix �Cp and �Cr,

respectively.Cpr
1

is defined from�Cpr
p and �Cpr

r in the same fashion.Cpr
2

is defined

by setting the odd numbered columns ofC
pr
2

to zeros and the even numbered

columns ofCpr
2

to the columns of�Cpr
a .

By substituting the first equation of (1) into the third, the acceleration term can
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be replaced by feedthrough:

_xs = Asxs + Bsu+ Bdw

y = Cxs

ypr = Cprxs +Dpr
u u+Dpr

w w

(5)

The performance output influence matrix is given by

Cpr = C
pr
1

+ C
pr
2
As

while the performance feedthrough matrices are

Dpr
u = C

pr
2
Bs ; Dpr

w = C
pr
2
Bd:

Notice that if there is no performance acceleration output (C
pr
a = 0), then

�C
pr
a = 0 andCpr

2
= 0, so both feedthrough matrices,Dpr

u andDpr
w , are zero.

Control System Equations

In this paper, it is assumed that the structure is controlled by a linear time-

invariant control system. The model of a linear time-invariant control system for

a typical flexible structure may be written as

_xc = Acxc + Bcy

u = �Ccxc

(6)

wherexc denotes thek�1 vector of control system states;Ac; Bc, andCc represent

the k � k control system state matrix, thek � q input influence matrix, and the

m�k output influence matrix, respectively; andy is the measurement output vector

which was defined in the previous section.

9



Frequency Domain Equations

For the open-loop plant,y andu of equation (5) are nonexistent, so the equations

reduce to

_xs = Asxs + Bdw

ypr = Cprxs +Dpr
w w:

The open-loop transfer function from the disturbances,w, to the performance

output,ypr, is defined for all complexs not in the spectrum ofAs and is given by

T (s) = Cpr(sI � As)
�1Bd +Dpr

w : (7)

The closed loop system is more complicated. Using equations (5) and (6), the

closed-loop dynamics of the controlled structure may be written as

_x = eAx + eBdw

ypr = eCprx+Dpr
w w

(8)

wherex represents the closed-loop state vector defined as

x =

�
xs
xc

�
; (9)

eA; eB; and eCpr are, respectively, the closed-loop state matrix, disturbance influence

matrix, and output influence matrix. These matrices are given by:

eA =

�
As �BsCc

BcC Ac

�
; eBd =

�
Bd

0

�
; eCpr = [Cpr

�D
pr
u Cc ] (10)
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The closed-loop transfer function from the disturbances,w, to the performance

output,ypr, is defined for all complexs not in the spectrum ofeA and is given by

eT (s) = eCpr
�
sI � eA��1 eBd +Dpr

w : (11)

Open-Loop Calculation

The algorithm presented here for calculation of the frequency response function

of an open-loop structural system seems to be a part of engineering folklore. It is

presented here for completeness and because it is a building block for the closed-

loop algorithm to follow.

Assumes is not in the spectrum ofAs. From equations (2) and (3), it follows

that (sI � As)
�1 is block diagonal with thei-th block being

�
sI2 � Ai

s

�
�1

=
n
1=
�
s2 + 2�i!is+ !2

i

�o�s+ 2�i!i 1
�!2

i s

�
; i = 1; 2; . . . ; p;

where I2 denotes the 2 by 2 identity matrix. Furthermore (see the discussion

following equation (4)) the odd-numbered rows ofBd are zero. If the rowi of

Bd is denoted byb(i)
d

, if Q(s) is used to represent(sI � As)
�1Bd, and if Q(s)is

partitioned as

Q(s) =

2
664
Q1(s)
Q2(s)

...
Qp(s)

3
775 (12)
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where each partition matrixQi(s) is a 2 byr matrix, thenQ is calculated using

the formula

Qi(s) =
n
1=
�
s2 + 2�i!is+ !2

i

�o" b(2i)
d

sb
(2i)
d

#
; i = 1; 2; . . . ; p: (13)

The open-loop transfer function calculation is completed in a straightforward

manner:

T (s) = CprQ(s) +Dpr
w

If desired, the gain and phase angle data (Bode plot data) may then be computed

directly from the frequency response function matrix. If there are no acceleration

performance measurements, then the feed-forward term is zero and the software

may bypass the step whereDpr
w is added in.

The standard, full matrix way to calculateQ(s) would involve first performing

an LU decomposition ofsI �As followed by a backward and then forward solve

of the triangular systems of equations using the columns ofBd as right-hand sides.

The FLOP (FLoating point OPerations) count for this isO
�
p3
�
+O

�
p2r

�
, soT (s)

is computed inO
�
p3
�
+O

�
p2r

�
+O(plr) FLOPS. Thus, in the typical case where

system size is much larger than the number of disturbances, the calculation time

per frequency point is a cubic function of system size.

If this calculation must be repeated for many values ofs (a typical scenario),

the technique of [1] and [2] has a better average FLOP count. An initialO
�
p3
�

orthogonal transformation must be done once; then for eachs, Q(s) is calculated
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in O
�
p2r

�
FLOPs, soT (s) is computed inO

�
p2r

�
+ O(plr) FLOPS. Thus, if

the number of frequencies for which this calculation must be repeated is on the

order of the system size, or larger, the calculation time per frequency point is a

quadratic function of system size.

When the calculation is done as in equations (12) and (13), the flop count is

O(pr), so T (s) is computed inO(plr) FLOPS. Thus, the calculation time per

frequency point is a linear function of system size. This represents a substantial

savings, particularly when a large number of modes is necessary to capture the

dynamics of the system.

Closed-loop Calculation

The closed-loop dynamics of the controlled system are given in equations (8),

(9), and (10).

Observing the closed-loop state matrixeA, it is obvious the block diagonal

form of the open-loop plant has been destroyed by the coupling generated by the

feedback connection of plant and the control system. However, the initial sparsity

of the open-loop state matrixAs is still intact. Now, the sparsity of the open-loop

state matrix is exploited to develop an efficient method for the computation of

closed-loop frequency response function matrix of the controlled flexible structure.

If sparsity is not exploited and many structural modes are modeled, it follows

from equation (11) that a large computational effort would be required to calculate
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the closed-loop frequency response function matrix, since this would involve the

computation of the matrix term
�
sI � eA��1 eBd with s = j! for all desired

frequency values!.

In the following it is assumed thats is not in the spectrum ofeA (necessary for

the transfer function even to be defined) and it is further assumed thats is not in

the spectrum ofAs. This further assumption is needed to enable some algebraic

manipulation, and should not adversely affect the applicability of the following

results. On the one hand, sinceAs is the plant state matrix for a linear model of

a flexible structure, its eigenvalues occur either at 0 (corresponding to rigid body

modes) or in the left half plane (corresponding to damped flexible modes). On the

other hand, it is anticipated that these results will be used to computeeT (s) for

s = j! with ! > 0. Thus, excluding the eigenvalues ofAs from the domain of

applicability of these results does not impact the anticipated usage.

The matrix term
�
sI � eA� in equation (11) may be written as

�
sI � eA� =

�
sIs � As BsCc

�BcC sIc � Ac

�
�

�
E11(s) E12

E21 E22(s)

�
(14)

where Is, and Ic are identity matrices of orders equal to the size of plant state

vector and controller state vector, respectively. Introduce the notation:

�
X11(s) X12(s)
X21(s) X22(s)

�
�

�
sI � eA��1 = �

E11(s) E12

E21 E22(s)

�
�1

(15)
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The assumptions which have been made abouts insure that the inverses in (15)

exist, as doesE�1
11

. Rewrite (15) as:�
X11 X12

X21 X22

��
E11 E12

E21 E22

�
=

�
Is 0
0 Ic

�
(16)

Expanding the lower left block of (16) and solving forX21 gives X21 =

�X22E21E
�1

11
. Expanding the lower right block of (16), substituting the previous

expression forX21, and factoring givesX22� = Ic, where� = E22�E21E
�1

11
E12.

This demonstrates that� is invertible, and justifies the application of the block

matrix inversion formula given in [3, page 898] to find the inverse of the block

matrix in Equation (15):

� = E22 � E21E
�1

11
E12

X11 = E
�1

11
+ E

�1

11
E12�

�1
E21E

�1

11

X12 = �E
�1

11
E12�

�1

X21 = ��
�1
E21E

�1

11

X22 = ��1

(17)

Using equations (10) and (15) in equation (11), the closed-loop transfer function

from the disturbances to the performance outputs is reduced to:

eT (s) = [Cpr
�D

pr
u Cc ]

�
X11 X12

X21 X22

��
Bd

0

�
+D

pr
w

= C
pr
X11Bd �D

pr
u CcX21Bd +D

pr
w

Using equation (17) this becomes:eT =Cpr
E
�1

11
Bd + C

pr
E
�1

11
E12�

�1
E21E

�1

11
Bd

+D
pr
u Cc�

�1
E21E

�1

11
Bd +D

pr
w
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Using equation (14), replaceE12 andE21 in:

1. the expression for� in equation (17)

2. the previous equation

This produces:

� =E22 + BcCE
�1

11
BsCc

eT =Cpr
E
�1

11
Bd � C

pr
E
�1

11
Bs

n
Cc�

�1
BcCE

�1

11
Bd

o

� D
pr
u

n
Cc�

�1
BcCE

�1

11
Bd

o
+D

pr
w

(18)

In this form, the following computational efficiencies are observed:

SinceE11 = (sI � As) andBs shares withBd the property of having zeros in

the odd numbered rows, the termsE�1
11
Bs andE�1

11
Bd can be computed using

the techniques presented for efficient computation of the open-loop transfer

function (see equation (13)).

The computation of��1Bc must be done as a full matrix computation, but

since� is of the same order as the control system, which is usually small

compared to the order of the analysis model of the plant, it should not be very

costly to compute.

Common sub-expressions, such as those mentioned in the previous items and

those enclosed in braces in equation (18) are computed once per frequency,

saved, and reused.

The expected shapes of the matrices and the exploitation of common sub-

expressions make it advisable not to precompute some of the matrix products
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in equation (18) which are independent of the frequency parameters (if X is

a tall, skinny matrix, andY is a short, wide matrix, so thatW = XY is both

tall and wide; and ifz is a vector, then calculatingX(Y z) is cheaper than

calculatingWz).

If there are no acceleration sensors in the performance outputs, so that the

feed-forward matrices are zero, the software may bypass the second line of the

eT calculation in equation (18).

Now, using equation (18) to calculateeT (s), the frequency response function

matrix of the closed-loop system is evaluated for various values ofs = j!, with

! taking on the user-specified frequency values. The closed-loop gain and phase

plots (Bode plots) may then be computed directly from the frequency response

function matrix, if desired.

The closed loop system matrixeA (equation (10)) has order2p + k. As in

the discussion of the open loop calculation, ifeT (s) is calculated as in equation

(11) using standard full matrix techniques, the computation takesO
�
(2p+ k)3

�
+

O
�
(2p+ k)2r

�
+O((2p+ k)lr) FLOPs per frequency point. Using the technique

of [1] and [2], if the number of frequency points for which the calculation is

to be repeated is on the order of2p + k or more, theneT (s) can be calculated

in O
�
(2p + k)2r

�
+ O((2p+ k)lr) FLOPs per frequency point. Again, these

are cubic and quadratic functions, respectively, of the system size. By counting
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FLOPs resulting from subroutine calls and DO loops in the FORTRAN software

used to implement the calculation of equation (18), it is determined thateT (s) can

be calculated in

O(p(lr + rq + qm + rm)) + O
�
k3 + k2r + k(rq + qm+ rm)

�
+ O(lrm)

FLOPs per frequency point. Again, this is a linear function of system size.

In future work, it is expected that theO
�
k3
�

in this last expression, which

comes from performing a LU decomposition on the matrix�, will be reduced to

O
�
k2
�
. This will be based on applying the technique of [1] and [2] toE22 and

making use of the observation that the other term in the definition of� is, in the

expected applications, of low rank.

Software Implementation

The evaluation of the open- and closed-loop transfer function has been imple-

mented using MATLAB function M-file (MATLAB, a product of The MathWorks,

Inc., is “a technical computing environment for high-performance numeric com-

putation and visualization” [4, pagei]), and as FORTRAN 77 code which is then

accessed through MATLAB using the MEX-file external interface facility. The

M-files contain straightforward implementations of the calculations presented in

the preceding two subsections.

The FORTRAN source code for the MEX-files uses the Basic Linear Algebra

Subprograms (BLAS, [5], [6], [7], [8], [9], [10], and [11]) to perform vector-
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vector, vector-matrix, and matrix-matrix operations. In addition, LAPACK ([12])

subroutine ZGESV, a complex double precision linear equation solver, is used to

calculate��1Bc.

Numerical Examples

A number of numerical examples are presented to demonstrate the efficiency

and accuracy of the algorithm presented in this paper compared to two standard

full matrix methods of calculating the frequency response function of a closed-

loop system.

The EOS-AM-1 Spacecraft Model

The data comes from a model for the EOS-AM-1 spacecraft used in a jitter

reduction study ([13]). The structural model contains 703 modes for a potential

1406 plant states. There are 6 rigid body modes and flexible modes ranging

from 1.24 to 1564 radians per second. The 6 measurement outputs are the

spacecraft’s roll, roll rate, pitch, pitch rate, yaw, and yaw rate measurements at

the spacecraft navigational unit. Actuators consist of x-, y-, and z-axis torquers.

The control system has 39 states. Up to 10 channels of disturbance input and

27 channels of performance measurement output were used. Each case was run

using position measurements at each output, resulting in no feedforward term, and

using acceleration measurements at each output, resulting in a feedforward term

being present.
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All algorithms used in this timing study are intended to be used to calculate

the frequency response matrix at multiple frequency points, so that the frequency

response may be plotted (as, e.g., Bode plots). They all have some calculations

which are done once per entry into the algorithm and other calculations which are

done once for every frequency point. To take account of this, all cases were run

over a range of 200 frequency points and most of them were rerun using 2000

points (the exceptions were the cases which would have required 5+ days of cpu

time to complete). In all cases, the points were logarithmically distributed between

frequencies of .01 and 10000 radians per second.

Software Used in Timing Studies

In this study, two software realizations of the closed-loop frequency response

function calculations are compared to two software realizations of previously

available algorithms.

The present algorithm is programmed both as a MATLAB function M-file and

as FORTRAN 77 code which is then accessed through MATLAB using the MEX-

file external interface facility. These will be called, respectively, the new M-code

and the new Mex-code.

One of the programs used for comparison makes use of the algorithm in [1]

and [2]. The FORTRAN code in [2] is in single precision; Laub’s own double

precision FORTRAN code is imbedded in the software package FREQ ([14]) and
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was used here. This test code is purely in FORTRAN 77. This will be called the

old FORTRAN code.

Preliminary testing indicated that, in order to get a reasonably well-conditioned

matrix for thesI� eA expression in the Laub code, it was necessary to exercise the

built-in option of balancing theeA matrix. The unbalanced matrix was particularly

ill-conditioned at low frequencies. This can be attributed to the presence of the

rigid body (0 frequency) modes. In the Laub code, balancing was coupled with

the extraction of the eigenvalues ofeA. As Laub wrote this code, the same value

of the input flag which signaled the code to balance theeA matrix also signaled the

code to extract its eigenvalues. For purposes of timing tests here, the Laub code

was modified so that the portion which extracts eigenvalues was bypassed.

The other program used for comparison is the MathWorks M-filefreqrc.m ,

an undocumented utility routine in theRobust Control Toolbox, [15], which calcu-

lates (to quote the program preamble comments) “Continuous complex frequency

response (MIMO)”. This will be called the old M-code. Once again, to achieve

reasonable accuracy, it was necessary to balanceeA. This was done using MAT-

LAB built-in routine balance .

Timing Comparisons

The executions times of the four test codes are compared on 12 representative

problems. Three different plant sizes were used: a small plant with 1 input, 1
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output, and 61 states (24 structural and 39 controller states); a medium plant with

3 inputs, 5 outputs, and 221 states (184 structural and 39 controller states); and

a large plant with 10 inputs, 27 outputs, and 1445 states (1406 structural and

39 controller states). For each plant size, two plants were used: one with no

feedforward term (i.e., no acceleration outputs were used as performance outputs)

and one with feedforward. The frequency response function of each of these 6

plants was calculated at a short (200 values) vector of frequency values and at a

long (2000 values) vector of frequency values.

Particularly on the larger plants, the new algorithm performs dramatically faster

than the older programs. This should not be taken as an indictment of the older

technology. The older technology was designed to apply to an arbitrary plant while

the new takes full advantage of the particular pattern of sparsity which results from

using the modal model of a flexible structure. On the other hand, when the new

technology is applicable, it enables analysis of structures of much larger order than

would be practical or even possible with the older technology.

Table 1 gives the time in seconds to calculate the frequency response function

using each of the 4 test routines for each of these 12 cases (except that the old

M-code does not attempt the two largest cases).

One conclusion to be drawn from this table is that the timing values returned

by the system timing software are not totally consistent with each other. The first
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three software packages in that table all check up front to see if feedforward is

present. The bulk of the code is executed whether feedforward is present or not.

If feedforward is present, additional code is executed which should take additional

time. But in 9 of 18 cases, the table shows the feedforward case taking less time

than the one without.

That said, there are still significant trends to be observed in this timing data. The

new Mex-code is significantly faster than the M-code; in the more important larger

cases, about 3 times as fast. This justifies the effort of rendering the algorithm in

FORTRAN and writing the interface necessary to access it through MATLAB.

Comparing the new Mex-code, which is FORTRAN based, with the old FOR-

TRAN code shows that for the small system, the old code more than holds its

own. This is not unexpected, since in the small system, the controller dominates

the count of states. Thus, there is relatively little of the sparsity from the structural

part of the plant of which the new Mex-code may take advantage. But even in the

medium size case, the new code is 4 to 7 times as fast as the old. This is getting

near the size at which conventional numerical analytic wisdom would place the

limits of applicability of the old, full matrix based, technique. Since the time for

the old FORTRAN code is expected to grow quadratically with the number of sys-

tem states while that of the new technique is expected to grow only linearly, it is

not surprising that the difference between them in the largest example is so great.
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In what is called here theold M-code, MathWorks actually used M-files for

outer loop logic control to drive a built in function,ltifr . This function calculates

the matrixG whose columns are(s(i)I � A)�1b wheres is a vector of complex

numbers (set in the present application toj!, wherej2 = �1 and! is a vector

of frequencies) andb is a column vector (set in this application to a column of the

B matrix). The on-line help forltifr states that it “implements, in high speed”

what the user could calculate by looping through the elements ofs and buildingG

one column at a time. Despite this, it is only competitive on the smallest system,

and then only against the new M-code which utilizes MATLAB built-in functions

only at the more primitive level of basic matrix operations.

All of the algorithms tested do have some “once per entry” calculations in

addition to the calculations which occur once per frequency value. Thus, the time

for the 2000 point calculationsshouldnever be more than 10 times that for the

200 point calculations. In Table 1, there are several exceptions to this. This

reinforces the previous remark that the numbers returned by the computer system

timing routines are, at best, approximate. However, from looking at the largest

case, it can be reasonably concluded that the “once per entry” overhead is fairly

small in both realizations of the new algorithm while being substantial in the old

FORTRAN code, at least for large systems. This is expected, since for a system of

ordern (all other parameters being held fixed), the “once per entry” overhead in

the old FORTRAN code includes the initial reduction which takesO
�
n3

�
FLOPs,
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while the “per frequency point” calculation takesO
�
n2

�
FLOPs.

Accuracy

No formal error analysis has been performed on the new algorithm. There is,

however, numerical evidence to support the thesis that the new algorithm is more

accurate than the older techniques, particularly when applied to larger systems.

Outputs from the four algorithm realizations were compared. For each fre-

quency value, individual entries in the frequency response matrices computed by

the four codes were compared using a symmetric relative error: The discrepancy

between complex numbersz andw (not both 0) was measured by

�(z; w) =
jz � wj

:5(jzj+ jwj)
:

This error measure ranges from a minimum of 0 to a maximum of 2. A value

of �(z; w) near 10�n indicates thatz and w agree to aboutn decimal places

while �(z; w) > :1 indicates anything from rough approximation (near .1) to no

correlation (bigger than, say, 1). For each fixed frequency, the worst discrepancy

over all possible input-output pairs was observed.

The size of the discrepancy between the frequency response function matrices

computed by these codes was observed to depend not only on which two of the

codes were being compared but also on the size of the system, the frequency, and

whether or not feedforward was present. It would take too much space to present

details of these comparisons. However, some general statements can be made.
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For each of the test problems (corresponding to one row of Table 1), the results

produced by the four codes were compared two by two. The overall best agreement

between any pair of calculations came from comparing the outputs of the new

Mex-code and the new M-code. At worst, these agree to about 7 decimal places.

This generally improves with reduction of system size or increase in frequency so

that best agreement is within machine accuracy. No other pairing, either between

one of the new codes and one of the old or between the two old, ever showed

noticeably better agreement, and in general the agreement was much worse. It

frequently occurred that the results from comparing the two new codes showed

that the agreement of their computations was better than that of any other pairing

by at least 2 decimal places. In the largest system, this advantage could increase

to 5 decimal places, particularly for small frequencies or when no feedforward

was present.

Thus, two dissimilar implementations of the new algorithm produce results in

good agreement. When a parallel process is applied to the older algorithm, the two

dissimilar implementations produce results which are not in such good agreement,

either with each other or with those of the new algorithm.

To provide further evidence that the results of the new algorithm are the more

accurate, the old FORTRAN code was translated to quadruple precision from its

native double precision and was run (at a time penalty of about 32�) on the medium

sized problem using no feedforward and 200 frequency points. The output from
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this showed the same degree of agreement with the output from the new codes as

they showed with each other.

These results combine to indicate strongly that the new algorithm provides

more accurate results than those previously available. There are theoretical grounds

for expecting this. The old way requires the solution of linear systems with the

coefficient matrixsI � eA which is usually of large order. It also had conditioning

problems which balancing ameliorated, but did not totally eliminate.

In the new algorithm, the coefficient matrices involved in the solution of linear

systems are�, which has the same order as the controller, and, fori = 1; � � � ; p,

sI2�Ai
s, which is of order 2. Particularly when dealing with a large order structural

model, the coefficient matrices used by the new algorithm are much smaller than

the matrixsI � eA used by the old, so there is much less opportunity for round-off

error. Any conditioning problems coming from the interaction of the frequency

represented bys = j! and thei–th structural mode in the old method is isolated

in the new method to calculating the denominator term!2

i
� !2 + 2j�i!i! in

equation (13); and this only gives numerical problems if! is so close to!i that

truncation occurs in forming the difference, and�i is so small that the (small) real

part !2

i
� !2 is a significant part of the whole term.

Summary

An efficient and novel procedure has been developed for the calculation of
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the frequency response function of a large order, flexible system implemented

with a linear, time invariant control system. The procedure takes advantage of

the highly structured sparsity of the system matrices of the plant in normal mode

coordinates. This reduces the computational cost from a quadratic function of the

order of the system to a linear function, thereby permitting the practical frequency

analysis of systems of much larger order than by traditional, full-matrix means.

Formulations have been given for both open and closed loop systems. Numerical

examples were presented wherein the advantages of the present formulation over

traditional approaches, both in speed and in accuracy have been demonstrated.

When exercised on the largest systems, the new Mex-code was about 40 times as

fast as the old FORTRAN code when many frequency points were used while the

advantage increased to a factor of about 80 or better when the calculation involved

few frequency points. In this latter case, the new M-code was over 200 times as

fast as the old M-code.
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Table 1 Time (seconds) to Calculate Frequency Response Function

System
Sizea

Freq.
vector
length

Feed-
forward
present

New
Mex-code

New M-code Old
FORTRAN
code

Old
M-code

1/1
24+39

200 no 1.98 11.18 1.26 7.57

1/1
24+39

200 yes 2.47 13.50 1.10 7.62

1/1
24+39

2000 no 24.78 108.87 10.08 71.18

1/1
24+39

2000 yes 19.60 135.20 10.36 71.92

3/5
184+39

200 no 5.03 18.53 29.84 287.93

3/5
184+39

200 yes 3.85 14.18 27.50 290.25

3/5
184+39

2000 no 46.08 147.00 213.69 2818.78

3/5
184+39

2000 yes 35.77 188.93 200.09 2830.32

10/27
1406+39

200 no 60.40 231.25 5714.94 49846.62

10/27
1406+39

200 yes 73.77 227.40 5756.99 49199.20

10/27
1406+39

2000 no 591.50 1922.75 24928.01 -

10/27
1406+39

2000 yes 615.73 1897.22 24929.14 -

a In "m/n" in the first line, "m" is the number of inputs and "n" is the number of outputs.
In "m+n" in the second line, "m" is the number of structural states and "n" is the number of controller states.
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